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Abstract--Procedures for 'deriving averaged conservation equations and jump conditions for two-phase 
flow are discussed. Averaged working equations for stratified horizontal flow are derived and analyzed to 
illustrate that inteffacial configuration, or flow regimes, must be considered in order to avoid inconsistencies 
in the model. The corresponding local instantaneous two-dimensional equations are also analyzed for 
propagation of disturbances in stratified flow. It is shown that the linear stability conditions for long waves 
are the same for both the averaged and local instantaneous cases. However, for finite amplitude waves the 
local instantaneous formulation leads to higher order dispersion terms that do not appear to arise in the 
averaged equations. In particular it is shown that finite amplitude waves are described by forms of the 
nonlinear Korteweg--deVries equation that can give rise to waves of permanent shape, and have fairly 
general classes of exact solutions. 

1. I N T R O D U C T I O N  

This is the first of a series of papers that investigates the formulation of models for transient 
two-phase flow. Problems of this type are of interest in the design, control and analysis of many 
process and power systems, such as nuclear, fossil fired and geothermal power stations. The 
presence of moving internal interfaces in two-phase flow makes predictions of flow behaviour 
much more difficult than in single phase flow. This is because the shape and movement of the 
interfaces are not known a priori, but form part of the problem being solved. Furthermore, they 
affect the structure of the flow field profoundly and may dominate transport processes between 
phases, and even at stationary boundaries. 

In principle, the local instantaneous conservation equations for each phase may be written 
down together with appropriate molecular transport properties, initial and interfacial/wall 
boundary conditions. The resulting initial moving boundary value problem is intractable except 
in the simplest cases. Also, for some design and analysis applications, the local instantaneous 
behaviour of the various flow variables is not required, and predictions of averaged quantities 
appear to be sufficient. This is true in the many practical situations in which temporal and/or 
spatial fluctuations are much smaller than the average (i.e. the noise is much less than the signal 
and one can be clearly distinguished from the other). 

Since averaged quantities are of engineering interest, one of the main approaches to 
two-phase flow modelling has been to average (in time, space, over an ensemble, or in some 
combination of these) the original local instantaneous conservation equations (e.g. Agee et al. 

1978; Boure et al. 1975; Delhaye & Achard 1976; Hughes et al. 1976; Ishii 1975; Lyczkowski et 

al. 1978; Nigmatulin 1978; Panton 1968; Vernier & Delhaye 1968; Yadigaroglu & Lahey 1976). 
The resulting averaged equations and interfacial jump conditions form a mathematical model 
that is much simpler than the original formulation, but information is lost in the averaging 
process and must now be supplied in the form of auxiliary relationships. These relationships are 
of two typesmthe first for interfacial and wall transfer of mass, heat and momentum, the 
second for intraphase distributions of the dependent variables. To illustrate the types of 
auxiliary relationships consider the single phase momentum conservation equation averaged 
over a thin cross-sectional slice of a uniform duct. 

~t PU)+ O(O~) +~z =(pFz)+((n" ~z))~ +~z(';zz), [11 
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where O is density; u is velocity; p is pressure; F is the external force; "~ is the stress tensor; n 
is the unit normal vector; and subscripts z and w denote components related to the z direction 
and the wall. The term (n. L.)w is the component of the averaged wall shear stress in the z 
direction and is often approximated by the expression for steady flow 

(n. f~),,. =-2fpu2/dh, [21 

where dh is the hydraulic diameter, and f is the friction factor. This is one type of auxiliary 
relationship needed, i.e. expressions for wall and interfacial transfer of mass, heat and 
momentum. We also need to separate the average of products into the product of averages of 
the dependent variables p and u. For this we need relationships between (pu) and (p)(u), and 
between (pu 2) and (p)(u) 2. This is another type of auxiliary relationship, i.e. distribution 
relationships relating averages of products of the dependent variables to products of averages. 
In addition, a relationship is needed between the phase pressures in two-phase flow problems in 
order to close the set of averaged equations. Quite often it is implicitly assumed that the phase 
pressures are equal. As we will show in this and following papers, this assumption is not a good 
one if the behaviour of various disturbances (waves) is being investigated. 

Though there is reasonable agreement between various formulations for the averaged 
two-phase flow models under identical physical situations and assumptions, as pointed out by 
Wallis (1976) and Yadigaroglu & Lahey (1976), there are still differences due to different ways 
of incorporating the various empiricisions required for the auxiliary relationships. 

A review of the range of applicability of various models is contained in the paper by 
Banerjee & Hancox (1978) where comparisons with experiment are also presented. It is shown 
that for many physically important situations, the most powerful and physically appealing 
approach is to consider the interactions between the phases explicitly. In this paper we will not 
discuss the status of model-experiment comparisons, but assume that the "multifluid" approach 
discusssed later is necessary for certain problems (Banerjee & Hancox 1978). 

Since this approach is still in a developmental stage we will first review the averaging 
process and derive a set of averaged equations. Separate sets of equations will be derived for 
each phase and coupled by interfacial transfers and jump conditions--an approach generally 
called "multifluid" modelling. Much of this is not really original except that particular attention 
will be paid to the treatment of the pressure terms, since these can often be the cause for 
differences in various formulations. Also the form of the pressure terms will be very important 
in the analysis presented in this and subsequent papers. For example, it will be shown in Parts 
II and III that higher order dispersion effects can arise even in the averaged formulation when 
the pressure differences between phases is properly taken into account. 

We then examine propagation of finite amplitude waves in a particular flow regime, stratified 
two-phase flow in horizontal ducts using the local instantaneous inviscid flow formulation and 
compare the results with those derived from our averaged formulation. The rationale for doing 
this is to determine what, if anything, is lost in the averaging process. It is shown that higher 
order dispersive effects are obtained for the local instantaneous case even in inviscid flow, 
whereas these do not arise in the averaged multi-fluid models if relatively crude approximations 
are made to the phasic pressure difference terms. 

The study on finite amplitude waves in stratified flow using the local instantaneous 
formulation is interesting not only because it identifies higher order dispersive effects that 
should arise naturally in averaged models, but also for the following reasons. 

First, it represents a relatively novel approach to elucidating the form of the momentum 
interaction relationships in averaged models based on analysis of the local instantaneous 
formulation for highly idealized flow configurations. It is shown that non-linear dispersive 
waves arise and can be described by the Korteweg--deVries equation in certain cases. A variety 
of explicit exact solutions for non-linear partial differential equations of this type have been 
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developed recently due to the remarkable work of Gardner et al. (1967) and Zakharov & Shabat 
(1971) (see also Whitham 1974, Miura 1976; Lax 1976). Because of this, a great deal of 
information can now be obtained on the nonlinear propagation of wave packets. We do not 
present solutions in this paper but will do so in later papers. 

Second, as discussed by Taitel & Dukler (1976), one fruitful approach to the analysis of 
transitions between flow regimes starts from the condition of stratified flow in horizontal or 
near horizontal systems. Taitel and Dukler consider the mechanisms by which a change from 
stratified flow can be expected to take place, as well as the flow pattern that can be expected to 
result from the change. The mechanisms are related to growth and propagation of interfacial 
waves of various types some of which may be governed by the equations derived in this paper. 

In this paper we will also introduce the perturbation method used in analysing the behaviour 
of finite amplitude waves. The method will also be used in subsequent papers for analysis of the 
averaged formulation. 

We discuss averaged two-phase flow models first, and then analyse the propagation of finite 
amplitude waves in stratified flow. 

2. AVERAGING PROCEDURES 

Averaging operators have been discussed by Delhaye & Achard (1976), Ishii (1975) and 
Nigmatulin (1978). The commonly used averaging procedures are: (i) volume or area averaging, 
with no averaging in time; (ii) time averaging, with no averaging in space; (iii) ensemble 
averaging, with no averaging in space; (iv) ensemble/space averaging or time/space averaging. 

The averaging procedure should lead to flow parameters that are continuous and have 
continuous first derivatives. The procedure should also separate "signal" from "noise", and 
result in averaged flow variables that can be measured with practical instrumentation. 

There are some difficulties with the continuity of flow parameters and their first derivatives 
if they are time or cross-sectional area averaged. For example if we cross-sectional area 
average, then the first derivatives become discontinuous each time an interface becomes 
tangent to the cross-sectional plane. Similarly the time derivative of a point void fraction 
measurement becomes discontinuous, since at any instant the vapour phase is either present at 
a point or not present. 

Therefore, double averages, time/space or ensemble/space, are usually used. To illustrate 
the procedure, consider volume averaged void fractions determined by trapping flow between 
two quick closing valves and measuring the proportion of each phase. The experiment can be 
repeated again and again by starting from the same initial conditions and by closing the valves 
after the same elapsed time. Results of some experiments by Banerjee et al. (1979) of this type 
are shown in figure 1. Clearly, the volume averaged void fraction fluctuates somewhat between 
successive experiments. 

To resolve this difficulty, we may average the volume averaged void fractions over the 
ensemble of completed experiments and these results are also shown in figure I. It is evident 
that after only a few experiments the ensemble average changes only slightly with additional 
experiments. 

Most experimental measurements involve some degree of spatial averaging because of the 
instrumentation involved, but they can usually be made with good time response. While 
space/time averages are the simplest to obtain "in experiments, difficulties may arise in 
distinguishing signal from noise in rapid transients. Space/ensemble averages are also straight- 
forward to obtain from a set of repeated experiments. Indeed, a very extensive series of 
blow-down experiments has been performed in which this was done (see Premoli & Hancox 
1976). However, for larger experiments, ensemble averages can only be obtained at prohibitive 
expense. Thus the subject of averaging procedures is by no means closed, especially for rapid 
transients. 

In general, time/space or ensemble/space averaging has the necessary desirable properties 
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Figure 1. Void fractions measured by trapping water between two quick closing valves. The same 
experiment was repeated several times. 

outlined previously. The averaging operators are commutative. Their use is illustrated in the 
next section. 

3. AVERAGED EQUATIONS AND JUMP CONDITIONS 

To illustrate the mathematical procedures used in averaging we derive the volume averaged 
one-dimensional conservation equations and jump conditions for transient multiphase flow in a 
duct of uniform cross-sectional area. Other types of averages can be derived in exactly the 
same way and do not change the form of the equations. In particular, time or ensemble 
averaging could be done first followed by volume averaging. Extensions to multidimensional 
flows and variable area ducts are straightforward. The resulting mathematical system derived by 
this approach is sometimes called a "multifluid model". 

The terms that are usually most difficult to deal with appear as integrals on the r.h.s's of the 
equations. To derive a working set of equations these integrals are usually approximated using a 
set of assumptions and semi-empirical transfer relationships. It is at this point that dis- 
agreements between different investigators appear. For example, the integrals involving pres- 
sure on the r.h.s's of the momentum and energy conservation equations can be treated using a 
variety of different assumptions, eventually leading to differences in the derivative terms 
involving pressure and void fraction. This aspect will be discussed in the following development 
as it is a controversy that is relatively easy to resolve. 
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Phase conservation equations 
Consider the flow situation in figure 2. The duct is assumed to be fixed with regard to a 

Galilean frame of reference. Let V~ be the volume of phase k enclosed between the walls and 
the cross-sectional planes spaced a distance Z apart (Z can be arbitrarily small). To derive the 
volume averaged form of the conservation equations, we will use Gauss' theorem and Leibnitz 
rule (Bird et al. 1960). The particular forms applying to figure 2 are given below• 

As mentioned previously, the equations are derived in volume averaged form rather than 
cross-sectional averaged form because some difficulties arise in the latter form when the 
interface and the cross-section coincides as, for example, when the whole interface occupies 
the cross-section in a refilling problem. The distance Z shown in figure 2 can be made as small 
as desired, so we essentially average over a slice• 

The theorems we will use are given below: 
Leibnitz rule 

Gauss' theorem 

0 
~ fvk(z,t)f(x, Y,Z, t) dV = fvk~z,t) ~t d V + folf(vi " nk) dS" [3] 

 ,dV • = n z ' a d V +  n k ' a d S .  [4] 
k(z , t )  k(z , t )  i 

We will define averages by the following symbols 

(fk) ---~k fkdV, 
k 

(fk)i = ~ fk dS, 
i 

[5] 

[6] 

where V = 2Vk. 
The local instantaneous form of the general conservation equation will not be derived as 

Truesdell & Toupin (1960) contains a discussion. If PkO~ is the quantity being conserved in the 
kth phase, and jk and ~k are the flux and source of 0k, then 

0pk~k + V .  pk0kvk +V" jk --Pk~k = 0.  
Ot 

The general conservation equation may be volume averaged using [3] and [4] as follows: 

Ot ~ ~PkORdV- ,pkOk(V~'nk)dS' 

-l- 
Z 

r Z 

Phase I 

j a i 

j ak w 

Figure 2. Definition of symbols and geometry for the averaging process. 
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The usual assumption that vk = 0 at the wall (ak,,,) has been used. The general volume averaged 
conservation equation is then derived as 

a I at v, 
Pk’,h dv+; nz '(Pk'hkvk +jk)dV- 

I 
vI pkgk d v 

= I pk$knk ‘(Vi-Vk)dS- nk,‘jkdS. 
0, 

Let a = vk/v = phase volume fraction. Then using [5] (the definition of ()), we have 

-$k(h$k)+ ~ak(n,'(~k~kvk+jk))+ak(px~k)=-t 
I 0, 

@k$k +jk 'nk)dS-+ 
I 

nk,, . jk dS 
“kr 

[71 

where we have written the interphase mass transfer rate as 

tik=pknk’(vk-vi). PI 

The forms of the conservation equations for each quantity (mass, momentum in the z 
direction and energy) for each phase may now be derived. 

Mass. In this case $k = 1, jk = 0, !% = 0. We have 

-$&k)+-$kbkuk)= -(kk)i = rmkr [91 

where [6] has been used to write the r.h.s. In general, the volume averaged interfacial mass 
transfer rate is not known a pn’oti and a correlation must be supplied. 

Linear momentum. III this case & = vk, jk = pkf - fk, & = FK. Taking the dot product Of the 
conservation equation [7] with the unit z direction vector n,, we obtain the equation for 
conservation of z direction momentum as 

1 =-- 
I v (li 

[~kuk+n,‘nkpk-n,‘(nk’h)]dS+t n, 
I 

‘(nkw’&)dS. [lOI 
fik”, 

To derive [lo] we must have used the relationship nkw . nzpk = 0 (since nkw . n, = 0 if there is no 
area change). Similar equations can be derived by taking the dot product with n, and ny. They 
are not shown here but can be of importance in multi-dimensional flows. 

The pressure term on the r.h.s. can be further simplified. It is only singled out because some 
substantial simplifications are then obtained for the case’ of constant cross-sectional pressure. 
The procedure also elucidates the “apparent mass” effect. Therefore consider 

I nk . (&Pk) ds = nk . [S(h) + APki + APL)1 dS ( 
4 I 0, 

where Apki = (Pki)-(Pki) is the difference between the average interfacial and average phase 
pressures and Ap;i = pki -(pki) is the difference between the local and average interfacial 
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pressures. If Apk~ is assumed constant over a,  then the fluctuating part between the bulk and 
interfacial pressure Api~--0. However, this is only true in stratified flow with no waves. As 
soon as waves appear Ap '~  O. This is illustrated by the measurements of Miya et al. (1971), 
where the interfacial pressure is plotted as a function of position along the wave. 

In addition it is possible to consider the difference between the local and average phase 
pressures but this does not lead anywhere because the equation is then phrased in terms of the 
local phase pressure and the fluctuating component. We have therefore left the momentum 
equation in the form shown in [12] as being the most useful. 

The difference between bulk and interfacial pressures may arise for a variety of other 
reasons--gravitational forces in stratified flow, flow separation behind bubbles and slugs, rapid 
bubble growth, etc. In any case they have to be taken into account in general (as pointed out by 
Stuhmiller 1977). Using Gauss' theorem 

if. V nk ' (n~pk)dS=-- [~k)+Apu]aak+i l  " , Oz V J~, nk "(n, apii) dS. [11] 

Substituting this into [ 1], we obtain the linear momentum conservation equation as 

t~ , "-k a , 2,+ a(Pk) ~a~OkUk1 ~ak~pkuk2 at Otk [l"zz,k ) - - /Apki  "~Z = elk (piF~,k ) - ( l~kUk ) i -- (Ap li)i 

+ ( ( n k  • "~,))i + ( ( n k ~  " '~,)),,,. [121 

Note that the equation reduces to the usual constant phase pressure form if Apki  = A p ~  i = O. 
In the form in [12], the integral involving Ap~i on the r.h.s, is precisely the term that leads to 

the "apparent mass" effect for inviscid flows. It may be calculated for inviscid flows if the 
shape of the interface is known a priori. However, this is generally not the case, and 
semi-empirical expressions are needed at present. 

Energy. In this case 

, v~.vA 
$k=Ek = ek * ~ , ] ;  jk=qk--(pkT--erk)'Vk; ~ k = F R ' v i  +Qk. 

Quite often vk • Vk ~ Uk 2, if the flow is dominant in the z direction. We have: 

8 + 8  a a 8 
"~ak(pkEk) ~'~ak(pkEkUk) + ~-~ak(qz,k) + ~Zak(pkUk) - ~-~ak(nz " (~rk " vi)) = ak(pk(Fk " Vk + Qk)) 

V [rhkEk + nk(qk + pkVk --"~t " Vk)] d S -  nkw "qk dS. 
i kw 

[13] 

The equation can be written in enthalpy form as 

2 

E k  = hk + ~ - Pkl  Pk . 

Now thk = pk(Vk -- V~)" n~ by definition 

Pk 
nk • pkVk  = ~ - ~ n k  • (Vk --  ¥1)Pk} + Pknk  " Vi 

= rhkPk + pkn~ "V~, 
Pk 
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or assuming that Vk ' Vk = Uk 2 we have 

l fa(rilkEk+n'pkVk)dS=-lfa,[mk(hk+U-~)+pk(nk'v,)]dS. [14] 
V 

For consistency in treatment with regard to the momentum equation we may write 

vfaPk(nk'v,)ds=lfo[(P,)+APk,+Apkd(nk'V,)dS, 

as discussed previously. Using Leibnitz's rule, we find 

lfo Oa~ lfo pk(nk " vi) ds = [(Pk) + Ap~i ] -~-+~ Ap/,i(nk" vi) dS.  [15] 
i i 

Substituting [15] into [14] and then substituting [14] into [13], we obtain the form of the 
energy equation given below• Note again that a term involving Apki has appeared on the l.h.s, to 
account for the difference between the bulk and interfacial pressure. Also a term involving Ap~i 
has appeared on the r.h.s.--this term is usually very small compared to those involving q~ and 

hk. 

~tak(pkEk) + 0 + 0 + 0a t+  Oak+ 0 ~z ak<pkEkuk) ~z ak<qz'k) (P~o~ Apki-~ ~-z akpkuk-Octk('nz'(~rk'vk)) 

]) = -  rhk hk+ +n~'viAp'ki+nk'qk-nk'v~'rrk --((nkw'qk))w+ak((pgVk'Fk+Qk)). 
i 

The l.h.s, may be written in enthalpy form 

/ [~ +u~ 2~\ a uk 2 

+ Apki-~ak + ~zak(qz.k)---~ak(nz" ('~k" Vk)) [16] 

] ~ [ Uk 2 
= - - , | m k , h k + - ' ~ ' - ,  + nk " ViAp~i + n k "  

~ L  \ Z ~ l  

Interface jump conditions 

qk--nk "Vk " ~ k ] ) -  ((nk~ 
i 

• qk))w 

+ ak((pkV, " Fk + Qk)). 

If the interface is treated as a contact discontinuity the local instantaneous form of the 
generalized conservation equation across the interface (i.e. jump condition) is 

o r  

[pkSk(Vk -- Vi) + jk]" nk = O, 
k=l 

• (rhk~bk +jk " nk) = 0. [17] 
k = l  

These local instantaneous equations may be volume averaged in the same way as the phase 
conservation equations. 
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Interface mass 

or  

k:l'V thk d V = 0 ,  
i 

( m l ) i  = - ( m 2 ) ~  • [18]  

Interface linear momentum 

k•--I• [n;IkUk + nz" (nkpk) -- nz" (nk ' "~k)] dS = 0. 
i 

Using Ill] and [18], and the identity ni = - n z  

[(/9 li) - (P2i)]-~z = (ml(ul - U2) + (Ap li - Ap~i) - nl" (?l,z - 72,~))i, 

where a = a l  and or2 = 1 - a .  
Interface energy 

2 fa 2 

Using [15] and [18], we have 

-,,,,[(,,, 
- \ " T i J L "  

Note again that the Ap~ terms could be very small compared to qk and hk. 
All the equations in this section have been derived in instantaneous volume averaged form. 

They can now be time or ensemble averaged and the form remains exactly the same. Terms like 

(dak(pkUk)lat) become (aCtk(pkUk)/dt) where the overbar denotes time or ensemble averaging. 
The averaging operators are commutative. 

Comments regarding phasic conservation equations and jump conditions 
Treatment of terms involving pressure. The one dimensional form of the volume averaged 

phasic conservation equations are given by [9], [10] or [12], [13] or [16]. The jump conditions 
are given by [18], [19] and [20]. If Apki iS not assumed constant, integrals involving the 
fluctuating part, Apki, appear on the r.h.s's of [12], [16], [19] and [20]. 

Many investigators assume that p = Pl = P2 = P~, = P:~. In that case the equations presented 
would simplify such that terms in~/olving Apki, Ap~i and ((PJi)-(P2i)) would vanish. Further- 
more, Pk would be replaced by p in [12] and [16]. 

If pressure is assumed to be constant in the slice, then the momentum equation is given by 
[12] with Apk i = Ap~  i = 0, and 

akO(Pk) ~ Otk Op 
- - ~  Tz " 

As mentioned earlier the fluctuating part leads to derivative terms in the momentum interaction 
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relationships due, for example, to the apparent mass effect. In general, when the interface is not 
aligned in the direction of mean motion, there will be an apparent mass force even in 
accelerating inviscid flows--therefore, this must be explicitly added to the momentum equation 
for all flow regimes except smooth stratified flow. The term arises naturally as part of the 
integrals involving the pressure interactions. 

If the pressure is not assumed constant but is left as an integral on the r.h.s, as in [lO], then 
the 1.h.s. will contain 

Oz 

There is nothing incompatible between the forms of [10] and [12]. In [12] the pressure 
interaction has been made as explicit as possible and therefore it is to be preferred, provided an 
integral involving Ap/,~ is added to the r.h.s. This integral must be evaluated for various flow 
regimes to at least obtain the apparent mass term. Smooth stratified flow is the only flow regime 
in which this term vanishes. 

Turning now to the jump conditions, we see that terms containing the derivatives of a and 
(Pl~ -P2i) occur in the momentum and energy conditions [19] and [20]. In flows with no (or low) 
mass transfer (and neglecting surface tension) (P,)-(P2~) is usually assumed to vanish and 
these jump conditions simplify to their usual form. However in cases where there is a high rate 
of mass transfer between phases (due to rapid vaporisation or condensation) and large gradients 
in a, the l.h.s's of [19] and [20] may be significant. In this case Apki may be small, but 

(Pl~)-(P2i) may be large. This is particularly true for flows where the mass transfer induced 
interfacial forces are much larger than the other interfacial forces (e.g. rapid condensation in 
stratified flow). 

Distribution effects in the derivative terms. To obtain a working set of equations, the 
averages of products of the dependent variables must be related to the product of averages. The 
assumption is generally made that phase density variations within the averaging volume are 
small so that distribution effects for quantities like Pk ak(Uk), Pk ~ have to be considered. 

It is usual to define average velocities and enthalpies as 

~ik [22] 

(hk)k ~ ak(hk) [23] 
6k 

See also Yadigaroglu & Lahey (1976) for a discussion. Definition [22] allows the mass 
conservation equation [9] to be written in terms of ak, Ok and (Uk)k. However for the momentum 
and energy equations, we require to define various distribution coefficients. Then the momen- 
tum equation [12] requires distribution coefficients of the form 

Ck = ak(Uk)k2, [241 

and the energy equation [16] requires 

C~ =a ak(hkUk) [251 
ak(h~)k(Uk)k ' 

c~ ~_- ak(Uk)k3. [26] 
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The time or ensemble and volume averaging symbols in definitions [22]-[26] may be inter- 
changed. Note that the distribution coefficients are not Galilean invariant. 

If the forms of these distribution coefficients are known then the l.h.s's of the conservation 
equations can be written in terms of Pk, ak, (Uk)k and (hk)k. At the present stage of knowledge, 
very little data on distribution coefficients are available, so they are generally set equal to unity. 
It is possible to evaluate these coefficients taking power law profiles like those suggested by 
Bankoff (1960). 

To illustrate the magnitude of distribution effects we have calculated Ck (using [24]) for the 
power law velocity and phase volume fraction profiles shown in figure 3. It is evident from 
figure 3 that Ck ---- 1.0 for flat velocity profiles, and only deviates significantly from unity for very 
peaked velocity profiles. Therefore, it may be reasonable to put Ck = 1.0 if the portion of the 
phase being considered is relatively homogeneous. One approach in multifluid modelling has 
been to split a phase into two components if they are known to have very different velocities 
and enthalpies. Thus in annular flow the liquid may be split into a droplet "phase" and a "liquid 
film" phase (see Saito 1977). Instead of writing a set of liquid phase conservation equations with 
distribution coefficients, one may write two sets of conservation equations for the liquid 
phase--one set for the droplets and one set for the liquid film--with distribution coefficients set 
equal to unity. Similarly, for subcooled boiling, where temperature distributions in the liquid 
phase are important, the approach has been to account for this by splitting the vapour 
generation (mass transfer) source term into two components--one for the bulk liquid and one 
for the wall liquid (see Hughes et al. 1976). 

This approach, of course, merely shifts the problem from one regarding distribution 
coefficients to one regarding transfer relationships for the new "phase(s)". However, in cases 
like annular flow and subcooled boiling it appears easier to determine the transfer relationships 
for a new "phase" on the basis of the data available. The approach taken in future will 
undoubtedly depend on the flow regime being modelled, and the type of data that can be taken. 

Distribution effects in algebraic terms. We have considered distribution effects in the deriva- 
tive terms (the 1.h.s's of the conservation equations). To derive a working set of equations, 
interphase transfer relationships phrased in terms of the averaged dependent variables ak, Pk, 

{Uk)k, (hk)k are also necessary. As mentioned previously, these relationships have to be supplied 
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largely on the basis of empirical information or by analogy to steady single phase flow (see 
Hughes et al. 1976 for a compilation of expressions for interphase transfers in the various flow 
regimes). Leaving aside effects due to large temporal and spatial gradients, the expressions are 
often based on relationships requiring concepts like friction factors, drag coefficients and heat 
transfer coefficients. Consider for example the interfacial frictional term (nk • ~z)i on the r.h.s. 
of [12]. This term is sometimes modelled by a frictional term of the form (aiBk(Ul- u2)), where 
ai is the local interfacial area, Bk is a coefficient involving densities, perhaps local velocity 
differences, and a characteristic local length scale. (u~- u2) is the ensemble or time averaged 
local velocity difference. We wish, in general, to write this as (al)(Bk)(UOl-(u2)2). If dis- 
tribution effects in a~ and Bk are ignored for the moment we still have to deal with the 
distribution of velocities. The resulting distribution coefficient, can be calculated for various 
power law profiles and is not insignificant, as pointed out by Zolotar & Lellouche (1979). For 
constant a~ and Bk across the cross-section, the distribution coefficient may be directly obtained 
for power law profiles from the results of Bankoff (1960). The same effect obtains also for 
interfacial heat transfer q~k if it is written in terms of a local temperature difference and heat 
transfer coefficients. 

Because of these rather complicated distribution effects that may occur in the interphase 
transfer relationships, it again appears physically appealing, where possible, to split phases with 
large cross-stream variations in velocity or temperature into two or more relatively homo- 
geneous components. 

4. AVERAGED WORKING EQUATIONS AND CHARACTERISTICS 
FOR STRATIFIED FLOW 

The conservation equations [9], [12] and [16] may be written in the primitive form (see 
Richtmeyer & Morton 1967). 

]i O0 + B OO= D, [27] 
Ot Oz 

• 4 and/~ are coefficient matrices, 0 and/5 are vectors containing the dependent variables and 
algebraic terms in the interphase transfer relationships. Much of the difficulty in multifluid 
modelling lies in specifying the relationships for the interphase transfer relationships in/5. 

To close the set of equations, we require equations of state for each phase, i.e. hk = f(Pk, Pk), 
distribution and interphase transfer relationships, initial and boundary conditions. The dis- 
tribution and interphase transfer relationships have to be obtained using empirical information. 

To simplify the situation, consider first the simple case of incompressible inviscid flow with 
no derivative terms in the interphase transfer relationships and constant cross-sectional 
pressure. We also assume the distribution coefficients Ck = C~ = C~ = 1.0. This leads to the 
r.h.s, of [27] being zero. (The nearest physical situation corresponding to these assumptions is 
smooth stratified flow; however to model this properly, variation in cross-sectional pressure due 
to gravitational forces have to be taken into account, as shown later.) For the assumptions 
stated 

o r = [ u l ,  Uz, hl, h2,p,a] and / 5 = 0 ,  

where the averaging signs have been dropped, i.e. (Uk)k = Uk, (hk)~ = hk, etc. Also 

apl 

(1-  a)p2 

A= 
ctpl 

(1 -a)p2 - ( I - a )  
pl 

- 0 2  

[281 



SEPARATED FLOW MODELS--I 13 

= 

"aplUl 

apl  

(1 - a)p2u:  

(1 -a)p2 

aplu! 
(1 -a)p2u2 

Ol 

1-or 

- -  Otll 1 

- (1 - a ) u 2  

pig1 ] 
-p2u2d 

[29] 

The characteristic determinant is 

detlB - AAI = 0.  

The characteristics are )t = (dz /d t )  = u~, u2, two infinities corresponding to the incompressibility 

condition and the two roots of 

ap2(U2 -- ~)2 Jr (1 - a)pl(Ul  - A) 2 = 0.  [30] 

The roots are real only if 

- a(1 - a)pl t~(u~ - u2) 2 -> O. [311 

For all two-phase flows with u~ ~ u2, [31] is never satisfied. Therefore A has an imaginary part 

and instabilities can be expected. 
Before proceeding further it should be recognized that the formulation in [27] is only valid 

for smooth stratified flow, otherwise derivative terms for at least the apparent mass effect must 
be included. It does not appear physically realistic that a smooth stratified flow can be 

maintained without a stabilizing force (say due to gravity) because of the possibility of 
Kelvin-Helmholtz instability. It is therefore of interest to determine the effect of a force of this 

type. Consider stratified flow in a rectangular channel as shown in figure 4. Appropriate 
expressions for Apk~ in [9], [12] and [16] are now necessary. They can be derived from the 
transverse momentum conservation equation but this is rather difficult if the transverse velocity 

field is not being determined. The simplest approach is to assume a static force balance to 
obtain Apki. If we also assume no mass transfer and surface tension then pli = p2i, and Ap~ = 0 

(smooth interface aligned in direction of flow), and 

p l g a H  = Apli, [32] 
Pi - Pl  = 2 

- p2g(1 - a )  H = Ap2i. [33] 
Pi - P2 = 2 

These expressions can be refined further, as stated before, by considering the transverse 

t T °. 
H 

1 ,1-!,H, 

walt 

PI,Pl ,u I 
interface Pi 

p2,P2,U2 
lwal l  

gravitational 
force 

Figure 4. Definition of symbols and geometry for analysis of stratified flow using the averaged formulation. 
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momentum balance. Incorporating these terms into A and/~ leads to the following changed 
expression in place of the two complex characteristics given by [31] 

where 

~ "llI2F~ ~ -1-1/2 
( u l -  u2): pOgHJ [ ~  + 1P_--~2a ] , [34a] A=Vo--- a~ +(1-a)/p:  ~-(p2- 

Vo - (1 - o t ) u l p  I + Otp2U 2 
ap2 + pl(1- a ) [34b1 

The characteristics are wholly real when 

(P2-Pl)gH[~ + (1-a)~>(ul-uz)2"p2 J -  [35] 

It should be noted that in this case the characteristics are identical to the phase velocities 
(to~k) that would be obtained from a linear dispersion analysis, in which the dependent variables 
/5" are perturbed by a wave 0 exp [i(kz- tot)], and the relationship between to and k is 
obtained. These conditions are exactly the same as derived by Wallis (1969) and Milne- 
Thomson (1960) for one-dimensional gravity waves in ducts using a quite different method. 
Delhaye (1978) and Rousseau & Ferch (1979) appear to have first derived this result using a 
somewhat similar analysis. It is clear that gravity stabilizes the flow over a significant range of 
parameters. However, when the inequality in [35] is violated, interfacial waves would presum- 
ably appear and additional inteffacial momentum interactions such as due to apparent mass 
effects would have to be incorporated. We shall show in the next section that [34] and [35] hold 
for the linearized phase velocity for long waves in stratified flow using an instantaneous 
two-dimensional formulation. 

The effect of compressibility can also be incorporated quite simply, in which case if 
(gH/Ck:)¢ 1.0, the characteristics become A = u~, u: the two roots given in [34], and Uo -+ Co 
where 

Uo = (1 - ot )plu z + otp2ul 
(1 - a)pl + apz ' [36a] 

t'- "7 1/2 

| / 
C o = /  pt _Oz / 

/ ct l - a [  " 
[36b1 

The expression for Co was also derived by Wallis (1969) using a different method and called the 
"stratified" sound speed. The condition for all the characteristics to be wholly real remains the 
same as in [35]. It should be noted at this stage that the characteristics are identical to the phase 
velocities arising out of a linear dispersion analysis for the case of inviscid flow with no mass 
transfer. A linear dispersion analysis would therefore yield the same results as the charac- 
teristics analysis. This is because/5 = 0 for the cases considered. 

We will also show in the next section that analysis of the instantaneous two-dimensional 
equations for stratified compressible flow yields the same linear phase velocities for long waves 
as given by the expressions in [34] and [36]. 

Thus the condition for the characteristics to be wholly real in this case appears to 
correspond to the linear interracial stability condition for long waves, which is quite reasonable. 
When wave amplitudes become significant, momentum coupling between the phases become 
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more complex and may contain derivative terms (due to apparent mass effects) even if we 
assume inviscid flow with no mass transfer. Cheng (1977) considered the general form of the 
apparent mass force and obtained 

where 
Fvu = Cv~oc~vu, 

arm = dtU~dt - dSUtdt +(1 - A)(ug -ul)"  V(Ug -Ul),  

[37] 

[38] 

and A and Cvu may be adjusted for various flow regimes, void fractions, etc. Though Cheng 
did not suggest this, Cvu is, in general, a tensor. Nigmatulin (1978) solved the problem for a 
particular flow configuration and obtained a somewhat different relationship for arM, but it also 
only contained first derivatives of the dependent variables. 

These apparent mass effects may be incorporated in the averaged working equations, and 
they will modify the characteristics somewhat. However, they are only first order terms and as 
long as we assume inviscid flow with no interfacial mass transfer, i.e. the r.h.s, of [27] is zero, 
the waves are purely hyperbolic and not dispersive. Certainly, no higher order dispersive effects 
enter [27] even when the suggested derivative terms for apparent mass effects are incorporated. 
(By dispersive is meant a system in which the phase velocity ~o/k, of a disturbance of frequency 
to and wave number k, depends on k, i.e. d2~o/dk 2 # 0.) 

5. ANALYSIS OF THE LOCAL INSTANTANEOUS FORMULATION 

The local instantaneous form of the non-linear equation for bubble compression and 
expansion has been considered by van Wijngaarden (1968) in analysing the propagation of 
pressure waves through bubbly mixtures. For pressure waves moving in one direction, he 
showed that they could be described by the Korteweg--deVries equation. Finite amplitude 
waves have also been considered by Nayfeh (1976) for two, incompressible, inviscid, semi- 
infinite fluids. Using the method of multiple scales, he was able to describe the evolution of 
interfacial wave packets by two nonlinear Schrodinger equations. Finite amplitude pressure 
waves propagating in a gas-liquid layer at rest has been considered by Moriaka & Matsui 
0975). A growing literature on wave propagation in two-phase flow has also recently appeared 
in the U.S.S.R. (see Kuznetsov et al. 1978). Much of it is concerned with bubbly flow and 
essentially starts with the homogeneous two-phase flow equations. The relationship of this work 
to multifluid models is discussed in Part III. Thus precedence exists in somewhat different 
situations for the type of investigation that we will now describe. 

Incompressible stratified flow 
We will start with the analysis for stratified flow of two incompressible fluids in a horizontal 

duct of height H as shown in figure 5. (Note that the coordinate in the flow direction is now 
designated by x.) We will later extend the discussion to compressible flow. It is easier to handle 

wall 

h Vg ,Ug,pg 
~ interface Y(t.x) 

vj ,u/,pj 

wall 

Figure 5. Definition of symbols and geometry for analysis of stratified flow using local instantaneous 
two-dimensional formulation. 
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the problem in the primitive form of the equation for the compressible case. Therefore we deal 
with the primitive form of the equations for the incompressible case as well. The conservation 
equations are: 

0u~ ~_ dvi = 0 [39] 
Ox Oy ' 

Ou~ Ou~ Oui 1 OP~ 
-ff  + u,-~x + v,-~y = o, ox ' [ 4 o ]  

With the boundary conditions: 

Ovi + Ovi + Ov~= 10Pi 
O---t ui o--~ VC~y pi Oy g" [41] 

r e = 0  at y = h ,  v l=0  at y = - ( H - h ) ,  

TO2Y _ OY + OY 
P e = P t +  'ff~x ' v i - ~  ui-~x at y = Y ( t , x ) ,  [42] 

where Y(t, x) describes the interface. Note that the boundary conditions are only correct for 
small displacements; otherwise the expression for the radius of curvature would be more 
complex. Unperturbed flow velocities are ui(0) in the x direction (see figure 5). 

The unperturbed interface is at y = 0, and the subscript i denotes the gas or liquid phase. A 
linear dispersion analysis indicates that the system is dispersive and suggests that the weak 
non-linearity may be considered for long waves by applying the reductive perturbation method 
(Jeffrey & Kakutani 1972). Because of the complexity of the derivation we will sketch the 
method here. 

We take the stretched coordinates 

7" = E3/2t, ~ = ~:I]2(X]D - -  t), y = y ,  

where v is the phase velocity to be determined from the following analysis, and ~ is a small 
parameter of the order of the surface displacements, which are assumed to be small but finite. 
The dependent variables may be expanded as 

u i = u i  (0) -~- ~ui (I) + E2U (2) + . . . .  

/)i = EI/2(E/)i(1) + ~2Ui(2) + . . . .  

pz = p(O) + epi(~) + E2p/(2) + . . . .  

Y = Ey.)+E2y(2)+ . . . .  

[43] 

The heuristic basis for expansions of this type and their range of application is discussed fully 
in Jeffrey & Kakutani (1972) and will not be repeated here. For terms not involving ~ we obtain 
the solution 

pi(O)(y) _ pi~O)(0 ) = p.~( y _ y) ,  [44] 

where P;~°)(0) is the unperturbed pressure at the interface and p~O)(y) is the unperturbed 
pressure at any position in the fluid. To the next order of ~ w e  obtain 

1 a O) 0vi(D - 
~ u i  +-~y = 0, [45] 
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~ v a~ - v c~ - p~v c~ = 0 "  

OP~"~ = O, 
Oy 

p , ) = p g t ~  at y = 0 ;  

vg t~)=0, at y = h ;  v[ ~)=0 at 

vg")l[ l - ug~O)/v ] - v[')l[ I - ut~O)/v ] = -O y")l O~ 

The equations may be integrated and the boundary conditions used to yield 

at y = 0  

p tl)(~, z) = Pttl)(~, ~') = pl(~, ~.) 

and 

y = - ( H  - h) ; 

at y = 0 .  

vs a)= {[(I - ug¢°)/v)h]/[p~(hg + v2(l - Ug~°)/v)]}OP~l)/O~, 

vl tl) = { - (H - h)(1 - u[°)/v)/[pl(v2(l - u,t°)/v) 2 - ( H  - h)g)]}OPtl)/O~. 

Using the boundary condition at y = 0, we obtain 

h (H-h) 
p~ [ hg + ( v - u¢t°)) 2] + pt [ ( v - u[°)) 2 - ( H - h )g ] = O . 

Writing h / H  = a, we can solve for v to get 

v = a P t u [ O ) + ( l _ ~ , , t o ) r  ~.. ( o ) _  ¢0)x2 -1112r^ p/ ]-1/2 
~''PRuR + / - - , u ~ - - u ,  , + ( p t _ p g ) g H j  [~a - ~ ' + l - a . [  a p t + ( 1 - a ) p  s - I . a / p ~  + ( 1 - a ) / p t  

17 

[46] 

[47] 

[48] 

[49] 

[50] 

[51] 

[521 

This is the result obtained from the characteristics analysis of the averaged stratified flow 
equations given in [34]. The same stability condition as presented in [35] also holds here. The 
method used here is, of course, supposed to explain the evolution of an instability, though the 
growth rate has to be relatively slow. Note that 0(1) change in ¢ implies as 0(~ -3n) change in t. 

In order to proceed to the next order in ~ we need to obtain expressions for Y") and u: j~. 
These are 

where 

[53] 

and 

P"~(~:, r) = A Y"'(~, r ) ,  

A = pl[v2(1 - u[°~Jv) 2 -  g ( H  - h ) ] / (H  - h ) -  pg[v2(1 - uRt°)/v)2 + gh]/h, [54] 

ui n~ = [gYtl~/v + Pin>/(piv)]/(1 - ui~°~/v). [55] 
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Consideration of the next order terms gives 

l (~Ui (2) OVi (2) 
v O~ +--~--y = 0 ,  [561 

dUi (2) U/°) 0U/(2) - - #  
a~ v a~ 

1 9P~2)q g O Y  a) Oui m .)Ou_~_ D uimaui m 
- - + ~ i v - ~  v 0 ~ -  Or vi Oy v OSj ' [571 

1 0P/(2) a/3i (I) Ul (0) a/3/1) 

Pi ,gy a~ v 0 ~ '  
[58] 

with the boundary conditions 

Vg (2) = 0 at y = h ;  v{ 2)=0 at y = - ( H - h ) ,  

T a2Y O~ 
pg(2) = pl(2) +/3 --~ ~---'-'2- at y = 0 ; 

) Ult°)OY O~ ] I f  U (°)'! rOY Ij> -v'2" - - -  V{2'+ u, ") OY( ' ) ] / [1  
v -~ J / L - u @ ° ~ ]  

Oy(2) 
- at y = 0 .  a~ 

[59] 

where 

and 

02p.) 
p(2) = B _T~_(hy _ f / 2 )  + F~(~, ~:), [601 

(1 - us(°)/v )2 
Be = [hg + v2(1 - uJ°)/v) 2' 

~2D( I )  
2 u x  + Pi ~2) = B,[(H - h)y + y 1 2 1 ~  Ft(r, •), [61] 

[ 1  - u/°)/v] 
Bi = - [v2( 1 _ u(O)/v)2 _ (H - h)g]" 

From the pressure boundary condition at y = 0, we have (for the constants of integration) 
the compatibility condition 

Fdr, ~) = Fe(r, ~) - ( T / v 2 ~ .  [621 

Equations [51] and [58] can be integrated and the velocity boundary conditions satisfied at y = h 
and - ( H  - h). The resulting expressions for the terms in the velocity boundary condition in [591 

where 

The expressions on the r.h.s's of [56]-[58] are known from the previous perturbation. These 
expressions can be substituted and the equations integrated for Pi (2~, Vi (2) and ui (2~. The 
expressions for these quantities must satisfy the boundary conditions given in [59]. On 
integrating [58] we get 
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can now be substituted and a compatibility equation obtained. Using [62], the compatibility 
condition simplifies to 

a3  x,r(I) a v ( l )  a v ( l )  
^O I ^ I f f l  t , ' z  A ~----~r-~ + B Y ( )--=-;--~ + d---r-- = O, or, o~ or [63] 

where 

C = - [ 2  Pt(H- U~(°)) + PS(V hU~(°)) 

~ = 3[ptC(V -- us(O))2_pl(1) -- Ut(°))2] 
h 2 ( H -  h) 2 J '  

fi~ = ~va[3T -pgh(v - Ug(°)) 2 -  pt(H - h)(v - u[°))2]. 

Equation [63] is the non-linear Korteweg-deVries equation for small but finite amplitude long 
waves. It is immediately evident that use of [53] in [63] leads to an equation of the same form 
for small finite amplitude pressure waves. Note the third order dispersion term in [63], which 
does not arise in the averaged working equations. It contains the surface tension effect but 
remains even if surface tension is neglected. 

The nonlinear Korteweg-deVries equation has recently been the subject of much study and 
many exact analytic solutions have been found. In general, transformation into a linear integral 
equation is possible. A consequence of the nonlinearity is the existence of waves of permanent 
shape (solitary waves). These are due to the nonlinearity exactly balancing the dispersion. We 
have developed numerical solutions to the Korteweg-deVries equation and compared these 
with analytical solutions where possible. The numerical solutions are now being compared with 
experiments in stratified flows and the results will be reported in a later paper. 

Compressible stratified flow 
For compressible flow, the conservation equations become: 

~t + ~(p~u,) +-~y p, v,) = o , [64] 

du~ + Oui + Oui _ OPi 
pi~-( p i u i ~  piv,'-~'y- Ox'  [65] 

avi Ovi dv~ ~Pi 
pi"~ + piUi~x + PiVi"~y = --~y - g [66] 

dPi = C a dpi. [67] 

The last equation is the equation of state. We will also assume that Ci is constant, i.e. the 
system is isothermal. The system has the same boundary conditions as in the incompressible 
case. Applying the reductive perturbation method as described previously and eliminating p:°) 
from terms not involving ~, 

Pi(°)(y) = Pi(°)(O) exp ( ~ Y  - y)) . [68] 
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For g/c~2(Y - y) "~ 1, p/co) can be reduced to 

p¢O)(y) = p[O)(0 ) + p o(o)g ( Y  _ y) ,  [69] 

which has the same form as in the incompressible case. 
The process of integration proceeds in the same way as for the incompressible case, but is 

extremely tedious and will not be detailed. Only two interesting results are shown. First, if V is 
the phase velocity, then the boundary conditions require 

y ( V  - Ug(°))2(V -//1(o))2 + (~(V - Ug(°)) 2 + / 3 ( V  - u/(°)) 2 + ~ = 0 ,  [70] 

where 

y = apl~°)G 2 + (1 - a)pg¢°)Cg 2 , 

6 = - (1  - a)[pg<°)Cg2GZ + aGZgH], 

/3 = - a  [p[°)Cg2CI 2 - (1 - cr)pg~°)Cg2gH], 

E = - a  (1  - a ) ( p l  ~°) - p . ¢ ° ) ) C ~ 2 G 2 g H .  

Equation [70] is identical to the characteristic polynomial obtained from the method of 

characteristics and the roots are given in [34] and [36]. The same stability condition also holds. 
For the next order the compatibility condition simplifies to 

^ o a y  0) ^ O)oy( l )  .oyt l)  
A - " ~ +  B Y ~ + C ~ = O ,  

which is again the nonlinear Korteweg-deVries equation and the coefficients are: 

= 3A-~V V - us~°))(V - utt°))[3 T -pg¢°)h ( V -  Ug¢°)) 2 -  plt°)(H - h)(V - uf¢°))2], A 

(1 - u[°) / V)  + co) B =  ~ I  ~ O T D [ ( g [ V  A/(p, ~ ) [ 1 +  p~O)VC'2(2g[v z_  V2(1 _A/(pg(o)~)ue(O)/V)2] 

[A V3(1 - u,(°)/~4]][pg(°)C,2[C? - V2(1 - ug(°)/V)211} + 

(1 - uaC°)/V) ~tol, + A/(pl(o)v))[1 1 

V(1 - u[°)lv)[ '6"~ [ 

[71] 

+ pt ~°)VG2(2g/v + A/(~ (°)V))] 
A[G 2 -  V2(1 - u[O)/V) 2 J 

+ [A V3(1 - ut(°)/V)4]][p[°)Ct2[Ct 2 - V2(1 - ut(°)[ V)2]] } ,  

- co) (o)~/~r ± (1 - ut~°)/V)[1 + 2gpa<°)/A + V2/C~2(1 - ua~°)/V) 2] 
= tug - ut jr, ,  7- [1 - V~[Cg2(1 - ug~°)/V) z] 

_ (1 - us t°)/V)[ 1 + 2gp~°)/A + V2/Ct2( 1 - u[°)/V) 2] 
[ 1 - V2/CI2(1 - u[°)/V) 2] 

Note that the third order dispersion term appears in [71]. These higher order dispersive effects 
are not seen in the averaged equations. 

The governing equation for pressure waves has the same form as [71] as also obtained 
for incompressible flow. 
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The form of the equation governing finite amplitude waves in compressible flow is similar to 
that in incompressible flow as evident from comparing [63] and [71]. However, the coefficients 
are considerably more complicated. Also the phase velocity for compressible flow, V, has two 
positive values, when it is real, corresponding to right moving pressure and gravity waves. For 
incompressible flow the expression for phase velocity only leads to right moving gravity waves 
(and the associated pressure field). 

An interesting result of some further algebraic manipulation ommitted here, is that the 
Korteweg--deVries equations for the compressible case become identical to that for the 
incompressible case for the values of phase velocity corresponding to gravity waves. This 
suggests that the gravity waves and pressure (or acoustic) waves are essentially uncoupled. 

Furthermore if we neglect gravitational effects and set the initial velocities ul ~°) = ug ~°) = O, 

then we obtain a form of the Korteweg--deVries equation that corresponds closely to that of 
Morioka & Matsui (1975). There are small differences as we have assumed a slightly different 
equation of state. This correspondence is to be expected since Morioka and Matsui considered 
pressure waves propagating into a separated gas-liquid layer at rest in a rectangular duct. They 
did not consider transverse body forces (like gravity) or surface tension, so their system is 
always unstable if there is relative mean motion between the phases. 

A consequence of finite amplitude pressure waves being described by [71] is that pressure 
solitons may be possible. So far as we know these have not been observed experimentally in 
two-phase flow, but it would be interesting to look for them. There is an extensive literature on 
this subject as discussed in Whitham (1974), but very little has been done in two-phase flow, 
except for the Russian work in bubbly flow reported by Kuznetsov et  al. (1978). 

6. SUMMARY 

Models for separated two-phase flow have been discussed with regard to averaging pro- 
cedures and the treatment of pressure terms. The forms derived in this paper will be used in 
subsequent papers and therefore the derivation has been presented in detail. The working 
equations for stratified flow have been derived and analyzed to illustrate that an arbitrary 
interfacial configuration cannot be imposed for all flow conditions. It is shown that the stability 
condition for the averaged equations corresponds to that obtained by analysis of the local 
instantaneous formulation for long waves. A reductive perturbation method has been used for 
the local instantaneous formulation and will be used in subsequent papers for averaged 
formulations. The growth of finite amplitude waves has been shown to be described asymp- 
totically by the Korteweg--deVries equation both for incompressible and compressible inviscid 
stratified flow. Thus higher order dispersive effects, that do not arise in averaged equations, at 
least with the assumptions used in this paper, have been identified. This leads to the possibility 
of waves of permanent shape arising out of the nonlinearity being balanced exactly by the 
dispersion. We conclude: 

• In developing multiphase models it is important to recognize that the shape and motion of 
the interface are part of the problem being solved. An arbitrary interfacial configuration cannot 
be imposed without giving rise to inconsistencies within the model. For example, the flow may 
be stratified under the action of gravity under certain conditions, but as the gas velocity is 
increased, interfacial waves will develop. These waves will grow and may eventually bridge the 
duct giving rise to slug or plug flow. Appropriate modifications to the interfacial force term are 
necessary when the shape of the interface changes. 

• With regard to averaging procedures time/space averaged equations are the most suitable 
from a practical viewpoint, but ensemble/space averaging may be needed for transients where 
the "signal" and "noise" are not clearly separated. Because of the expense involved in 
repeating sets of experiments, ensemble averaging is sometimes impractical, and more work is 
required for transients of this type. 

• Analysis of the local instantaneous form of the conservation equations for highly 
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idealized interface configurations (flow regimes) may be interesting. Changes in the interface 
shape are taken into account naturally in such analysis and therefore show effects that do not 
arise in the usual forms of the averaged equations. For example, higher order dispersion terms 
have been identified in our analysis of stratified flow. 

• In certain flow regimes, finite amplitude waves are described by non-linear equations, like 
the cubic Schrodinger or Korteweg-deVries equations, which have classes of exact solutions. 
Solutions to these equations and comparison with appropriate experiments would be of 
considerable interest. 
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NOMENCLATURE 

cross-section area 
arbitrary vector field 
interracial area per unit volume 

area of phase k in contact with wall per unit volume 
coefficiented of interracial frictional term 
distribution coefficients 
specific heat 
sound speed 
hydraulic diameter 
total energy (internal + kinetic) 
specific internal energy 
body force 
friction factor or arbitrary function 
gravitational acceleration 
height of duct 
distance between interface and upper boundary of duct 
specific enthalpy (if subscripted with k) 
identity tensor 
flux of conserved quantity 
mass transferred per unit volume per unit time 
outward drawn normal 
pressure 
heat flux vector or heat transferred per unit volume per unit time 
heat generated per unit volume per unit time 
source of conserved quantity 
surface tension 
time 
velocity in z or x direction 

velocity in y direction, phase velocity for incompressible flow 
velocity vector 
volume or phase velocity 
rectangular co-ordinates 
shape of interface 
volume fraction 
interfacial mass transfer 
characteristic direction 
density 
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stress dyadic 
r, ~ stretched co-ordinates 
rwk wall friction per unit volume acting on phase k 
~'ik interfacial friction per unit volume acting on phase k 

conserved quantities 

Subscripts 
1, g vapor phase 
2, l liquid phase 

i interface 
k phase index (i.e. 1 or 2) 

sat saturation 
w wall 
z component in z direction 
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